
Open Source
Software Supply
Chain Security
A Publication of The Linux Foundation
February 2020

www.linuxfoundation.org

The Linux Foundation2Improving Trust and Security in Open Source Projects

While innumerable strategies, frameworks, and “best
practices” guides have emerged, few of which agree
and some of which outright contradict each other,
general consensus has grown around the need for
increased diligence regarding the “software supply chain.”

But even the term software supply chain raises its own
host of questions. What exactly counts as “software?”
Who are the “suppliers?” And, perhaps most importantly,
what does the so-called “software supply chain” actually
consist of?

Modern software development has become a significantly
more complex process than in past decades, primarily
due to its increasingly distributed nature. It is now
exceedingly rare for organizations to write the majority
of their software in-house. Instead, most organizations
leverage high-quality and freely-available open source
software (OSS) to create the bulk of their software
products, with proprietary software either acting as the
“glue” that holds the various pieces of OSS together, or
as a unique service or function sitting on top of it.1

Consequently, a single piece of “software” is actually
more properly understood as the sum of the various

software packages of which it is comprised. Further,
because OSS is designed and written not only by
individuals or even individual companies, but often
by multiple if not dozens of discrete and distributed
developers working together, software “suppliers”
run the gamut from hobbyists to multi-billion dollar
companies. Every highly successful open source project
has been built via an open framework of voluntary
contributors by software engineers who devote their
own time or their company’s time to improve the
project. Any policy discussion around a software supply
chain must maintain this incredibly important open
contribution framework.

Already, then, the “software supply chain” is massively
complex. Adding further complications, there exist
additional, more technical parts of the supply chain
specifically involving how software is stored, retrieved,
and analyzed that implicate additional factors. Where
before software was typically delivered between
businesses, or from businesses to customers, using
physical mediums like CDs, today software—both OSS
and proprietary—is more often stored in “repositories”
and retrieved remotely over the Internet using tools
such as project dependency managers (PDMs), more

Introduction
As cybersecurity incidents have continued to grow in magnitude, frequency, and consequences,
both public and private sector attention has turned to questions of what, if anything,
organizations may do to better manage the risks of today’s modern, connected world.

1. While exact numbers vary, experts estimate that somewhere between 60-80% of modern software is comprised of OSS. See 2019 Open
Source Risk and Analysis, Synopsys, available at https://www.synopsys.com/software-integrity/resources/analyst-reports/2019-open-source-
security-risk-analysis.html, and The Forrester Wave™: Software Composition Analysis, Q1 2017, Forrester.

https://www.synopsys.com/software-integrity/resources/analyst-reports/2019-open-source-security-risk
https://www.synopsys.com/software-integrity/resources/analyst-reports/2019-open-source-security-risk

The Linux Foundation3Improving Trust and Security in Open Source Projects

commonly referred to as the more general “package
managers.”2

Thus, the software supply chain can be understood to
contain the following parts:

While the majority of recent attention regarding
securing the software supply chain has focused on the
first element in this chain—the developers—or the last
part—the end users—weaknesses exist at all levels,
leading to incidents like:

2015 Repackaging of
Xcode for Malicious Code
Distribution
In 2015, a security firm alerted Apple that thirty-nine
applications available through the App Store were
infecting iPhones and iPads. Once downloaded onto
affected devices, the malicious applications connected
to remote command-and-control servers and uploaded
sensitive user information as part of a botnet. Further
investigation revealed that the malicious code had been
inserted into the applications through a “repackaged”
version of Apple’s official development platform Xcode.
Dubbed “XcodeGhost,” the Xcode-lookalike would add

the botnet code alongside the otherwise legitimate
apps developed using the platform.

While the apps were promptly removed and Apple took
additional steps to ensure that legitimate developers
had access to the official version of Xcode, the incident
highlighted the risks to otherwise highly-curated
software to vulnerabilities within its supply chain.3

2016 “left-pad” Dependency
Incident
In 2016 and following a dispute about naming rights
to an unrelated OSS package, a well-known developer
removed all of their OSS packages from npm, the
software registry used to distribute Node.js code. In
total, the developer deleted 273 packages from npm
altogether, but the problem rested primarily with
one: left-pad. A deceptively simple package, left-pad
right-justifies text for more human-readable text
output. However, because it was relied upon by a
number of critically important downstream packages—
including Babel, a tool which “cleans up” and updates
JavaScript code during the compilation process—its
sudden disappearance “broke” many downstream
pieces of code.

Another developer quickly replaced the vanished
package with one that was functionally equivalent,
but problems remained for some time as downstream
developers scrambled to update their code and ensure
that it referenced the new package rather than the

2. This paper uses the term “PDM” as defined in this article, instead of the more common “package manager,” to differentiate between the
types of package managers, as different types have wildly different security and operational practices.

3. Apple scrambles after 40 malicious “XcodeGhost” apps haunt App Store, Dan Goodin, ArsTechnica (Sep. 25, 2015),
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store/.

https://medium.com/@sdboyer/so-you-want-to-write-a-package-manager-4ae9c17d9527
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost

The Linux Foundation4Improving Trust and Security in Open Source Projects

old. In addition to highlighting in stark clarity the risks
developers face in relying upon upstream packages
over which they have little to no control, the incident
also revealed a widespread “dependency” issue, where
developers who had no idea and no intention to rely
upon left-pad were also affected due to the package
being nested within their upstream dependencies.

Though the left-pad incident happened over three
years ago, many of these same problems remain.4

2017 Python Package (PyPI)
Highjacking
In 2017 attackers created malicious libraries with
names that “closely resembled” the names of built-
in Python libraries, and unsuspecting developers
downloaded the malicious ones instead. The malicious
packages contained the same code as the originals,
except for an installation script that was changed to
include malicious code.5

2018 Python Package
Highjacking
In 2018, a cryptocurrency-stealing Python package
called “Colourama” was discovered in the Python

software repository. The name of the package was
deliberately meant to be associated with and/or
confused for the legitimate package “Colorama,” one of
the top-20 most-downloaded pieces of software within
the Python repository.

While the malicious package had only been
downloaded 151 when it was discovered, clearing
the infection from affected devices took significant
effort, and highlighted the vulnerability of software
repositories to such tactics.6

2018 Backdooring of “event-
stream” Library
In 2018, one of the most widely-used JavaScript
libraries was backdoored to insert cryptocurrency-
stealing code into the package. Notable not only for
its subsequent reach—the event-stream library had
been downloaded 2 million times at the time of the
backdoor’s discovery—the insertion was significantly
more sophisticated than similar incidents.

To begin with, the malicious actors behind the backdoor
managed to obtain legitimate publishing rights to the
event-stream package itself by offering help to the
beleaguered original developer. Once they had gained
said access, they used it to add a benign package to the
npm registry, flatmap-stream, and added the package

4. Rage-quit: Coder unpublished 17 lines of JavaScript and “broke the Internet”, Sean Gallagher, ArsTechnica (March 24, 2016), https://
arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/.

5. Goodin, Dan. 2017-09-16. “Devs unknowingly use “malicious” modules snuck into official Python repository: Code packages available in PyPI
contained modified installation scripts.” Ars Technica. https://arstechnica.com/information-technology/2017/09/devs-unknowingly-use-
malicious-modules-put-into-official-python-repository/

6. Two new supply-chain attacks come to light in less than a week, Dan Goodin, ArsTechnica (October, 23, 2018), https://arstechnica.com/
information-technology/2018/10/two-new-supply-chain-attacks-come-to-light-in-less-than-a-week/.

https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javas
https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javas
https://arstechnica.com/information-technology/2017/09/devs-unknowingly-use-malicious-modules-put-in
https://arstechnica.com/information-technology/2017/09/devs-unknowingly-use-malicious-modules-put-in
https://arstechnica.com/information-technology/2018/10/two-new-supply-chain-attacks-come-to-light-in
https://arstechnica.com/information-technology/2018/10/two-new-supply-chain-attacks-come-to-light-in

The Linux Foundation5Improving Trust and Security in Open Source Projects

as a dependency in event-stream itself. About a month
later, the malicious actors added malicious code to flatmap-
stream—and therefore to event-stream—that targeted
users of a popular cryptocurrency wallet software.

The staged attack, along with the effort undertaken by
the actors to gain publishing access to the event-stream
package, shows not only that there are weaknesses
in the way that new code and new developers are
scrutinized, but also that there is increasing value
for malicious actors in putting forth such effort. This
suggests that not only will similar attacks continue, they
are likely to grow in frequency and sophistication.7

July 2019 Account Takeover
of Popular Ruby Gems Package
In July 2019, an astute developer updating their
codebase noticed a missing changelog.md file in one
of their dependencies. The affected package, strong_
password, had been updated from 0.0.6 to 0.0.7 with
no explanation of the changes, and with discrepancies
in the code hosted on Github and the code hosted
within the Ruby repository. The developer investigated
further and discovered that the package had been
updated to include code that, upon execution within
a production environment, would contact a remote
URL and retrieve additional code. Once retrieved, the
new code presented the opportunity for remote code
execution within the infected environment.

The developer notified the original maintainer of the
package, who then discovered that their account with

the Ruby repository had been taken over. A malicious
actor had compromised the maintainer’s account,
shifted ownership of the package, and then published
the backdoored code. While unconfirmed, the original
maintainer believes that a lack of two-factor or multi-
factor authentication (2FA or MFA), along with potential
password reuse, was to blame for the malicious actor’s
ability to gain access to their developer account.8

Because dependencies such as strong_password are
deployed within a wide array of environments, and because
they typically are associated with well-known developers
who have developed a reputation for trustworthiness,
the value in being able to take over such developer
accounts is high. Similar attacks are likely to increase.

2018-2019 Webmin
Compromise
Beginning in April 2018 and discovered in August
2019, the popular Webmin administration tool was
backdoored by an unknown malicious actor. The
change was relatively small, but allowed for significant
impact: malicious actors who used the backdoor could
leverage a specially-crafted URL to send commands
to infected servers, which would then execute the
commands with the highest level (root) privileges.

According to Webmin’s developer, the server containing
the Webmin source code was exploited in April 2018,
allowing malicious code to be inserted. The attackers
then altered the associated server logs so that it looked
like the file had not been updated in some time, hiding

7. Widely used open source software contained bitcoin-stealing backdoor, Dan Goodin, ArsTechnica (November 26, 2018), https://
arstechnica.com/information-technology/2018/11/hacker-backdoors-widely-used-open-source-software-to-steal-bitcoin/.

8. strong_password v0.0.7 rubygem hijacked, Tute Costa (July 3, 2019), https://withatwist.dev/strong-password-rubygem-hijacked.html.

https://arstechnica.com/information-technology/2018/11/hacker-backdoors-widely-used-open-source-soft
https://arstechnica.com/information-technology/2018/11/hacker-backdoors-widely-used-open-source-soft
https://withatwist.dev/strong-password-rubygem-hijacked.html

The Linux Foundation6Improving Trust and Security in Open Source Projects

the change from common detection mechanisms like
code comparison tools. The altered code persisted
either through lack of detection or additional malicious
actions through August 17, 2019, when an outside party
discovered that the backdoor had been released as
part of a 0-day exploit.

While the infection was cleared and additional steps were
undertaken by Webmin’s maintainers, the incident serves
as another example of both the vulnerability of such
software and their continuing value to malicious actors.9

August 2019 Discovery of
11 Backdoored RubyGems
Libraries
In August 2019, analysis by a developer examining Ruby
libraries identified 11 backdoored packages. In each case,
the backdoor allowed malicious actors in possession
of pre-chosen credentials to remotely execute code on
infected servers. The infected packages also allowed
for the mining of cryptocurrencies.

While it is unclear how each of the libraries became infected,
for at least one of the packages, the modification of the
code was possible due to the compromise of a developer
account. That account had been using a previously-
cracked password, and was not protected by 2FA or MFA.10

In addition to the examples described above, some
cybersecurity incidents in which the exact cause is

unknown, but which are suspected to be connected
to the software supply chain itself, have had
consequences beyond the technical:

08/07/2019 06:13
We aren’t certain how the malicious code got on the @British_Airways server, but I

hope £183m is enough to revisit the development community’s decision that build

systems should download code from random Internet strangers and run it on your

production environment

Steven Murdoch (sjmurdoch)

These incidents—among other, less notable incidents
much like them—demonstrate the weaknesses
inherent in the current policies, processes, and
procedures used by package managers and
repositories. Exacerbating the situation further,
because these elements of the supply chain are
indispensable to modern software development,
organizations in nearly all cases must use them,
thereby exposing them to high levels of risk that are
typically beyond their control.

Finally, there exists one final element, separate
from the software supply chain but indispensable
to it: vulnerability databases. Given the distributed
and overwhelmingly complex nature of modern
software development, the identification, analysis,
remediation, and tracking of vulnerabilities discovered
in deployed software is critical. However, the
world’s most depended-upon vulnerability tracking
database—the National Vulnerability Database (NVD),

9. The year-long rash of supply chain attacks against open source is getting worse, Dan Goodin, Ars Technica (August 21, 2019) https://
arstechnica.com/information-technology/2019/08/the-year-long-rash-of-supply-chain-attacks-against-open-source-is-getting-
worse/; Webmin page explaining exploit, Webmin, http://www.webmin.com/exploit.html.

10. Id.

https://arstechnica.com/information-technology/2019/08/the-year-long-rash-of-supply-chain-attacks-ag
https://arstechnica.com/information-technology/2019/08/the-year-long-rash-of-supply-chain-attacks-ag
https://arstechnica.com/information-technology/2019/08/the-year-long-rash-of-supply-chain-attacks-ag
http://www.webmin.com/exploit.html

The Linux Foundation7Improving Trust and Security in Open Source Projects

fed by the Common Vulnerabilities and Exposures
(CVE) program—continues itself to struggle with the
growth, pace, and complexity of modern software
development.11 These struggles have direct impacts on
developers and companies that rely on the CVE and
NVD programs, and impact the security and reliability
of the software supply chain as a whole.

This white paper will explore the security and reliability
issues currently affecting the software supply chain,
and identify where and how changes may be made to
improve it overall.

11. House panel rips CVE contracting and oversight policies, Sean Lyngaas, Cyberscoop (Aug. 27, 2018), https://www.cyberscoop.com/cve-
mitre-house-energy-and-commerce-committee/.

https://www.cyberscoop.com/cve-mitre-house-energy-and-commerce-committee/
https://www.cyberscoop.com/cve-mitre-house-energy-and-commerce-committee/

The Linux Foundation8Improving Trust and Security in Open Source Projects

Examination of the Software
Supply Chain
Developer Practices

In the graphic introduced earlier in this paper, developers
are listed as the first link in the software supply chain.
While this is true, developers also exist at and between
every other link: they are the common element threaded
through each piece of the software supply chain.
Developers choose the programming languages they use,
and therefore the repositories and PDMs upon which they
must rely. They choose the libraries and packages and
other OSS that become the building blocks of companies’
completed products purchased by end users. They are,
put simply, the single most indispensable element of
the software supply chain.

However, even given their importance to and influence
over that supply chain, many developers do not follow
application security best practices when developing
software. There are a variety of reasons for this. For one
thing, as previously discussed, software development
today is a massively complex process. Consequently, it is
far easier said than done to “follow security best practices,”
especially given the sheer number of proposed “best
practices,” and the fact that one advocate’s strategy might
be another’s fatal weakness. For another, security is
often seen—and often in fact acts as—an impediment
to developer and user experiences with software. As a
result, many developers avoid or minimize their usage
of what would otherwise be sound security practices.

This ignorance of or reluctance to fully embrace
security practices has a number of consequences,

many of which were highlighted in the supply chain
incidents described above. Many of those incidents
could have been avoided had the developers involved
used well-known and widely accepted security
practices, such as:

•	Using two-factor or multifactor authentication
(2FA or MFA) for developer accounts and other
important accounts associated with a given
project’s design, deployment, and maintenance;

•	Requiring that projects support change control
tracking throughout the development process,
to include who made changes and when those
changes were made;

•	Ensuring that projects have a unique version
identifier for each release, thereby allowing
downstream users to track new releases and
establish controls and verification mechanisms
around them;

•	 Integrating testing into the project’s development
lifecycle to check not only for common bugs
and unexpected behavior, but also for malicious
changes that may have been made without the
developer’s knowledge;

•	Leveraging tools or other mechanisms to ensure
that a project’s dependencies are documented

The Linux Foundation9Improving Trust and Security in Open Source Projects

and communicated in such a way as to be readily
consumable by downstream users;

•	Leveraging tools to ensure that dependencies are
appropriately tracked, analyzed, and managed;

•	Cryptographically signing or otherwise presenting
verifiable proof of a project’s integrity;

•	Tracking and remediating vulnerabilities both within
newly-developed code and in OSS dependencies
integrated into a given project.

While it is certainly untrue to claim that all or even most
developers fail to apply these and other best practices,
many don’t. Some may have valid reasons for not doing
so—they don’t have the resources, expertise, or support
necessary—and others may simply be unaware that they
should be leveraging them. In both cases and many more,
however, the absence of these and similar best practices
have severe downstream consequences not only for the
developer, but for the end users of the impacted software.

Repositories
As information technology practices have evolved
over the years to take advantage of rapid increases in
network speeds, cloud computing, and other similar
advances, so too has software development. Where
before much software development was performed in-
house, using code licensed from partners or vendors,
now the majority of development involves ingesting
large amounts of OSS retrieved free and often without
restrictions over the Internet. While the exact locations
of this stored software may vary, many developers rely
on software storage sites known as “repositories.”

At its most basic, a software repository is a server that
contains a collection of software packages.12 These
packages may vary from small utility libraries up to full
command line tools and development frameworks.
Traditionally Linux systems rely on an Operating
System repository to manage the applications—and
dependencies of those applications—based on the
Linux distribution that they are using. The developers
of that distribution maintain all of the packages in a
set of repositories and keep them up-to-date based
on the releases of the upstream software packages, as
well as fixing reported security and other bugs in those
packages where needed.

With the growth of interpreted programming
languages, starting with perl, it became advantageous
for a language to offer an expanded repository of
“helper” libraries for users of that programming
language. Due to the size of these repositories, they
typically have fallen outside of the main packaging
ability of individual Linux distributions. Because of
this growth in these language specific repositories,
it is practically required that any developer using
those languages also use the language repository
tools to install needed dependencies, as well as for
when developed software needs to be run on non-
development systems.

Because a large percentage of software development
today relies on OSS, and because a large amount of the
world’s most depended-on OSS is written in languages
that rely on language repositories for their libraries,
developers must retrieve some subset of software from
these repositories. However, for a variety of historical
and economic reasons, such language repositories in
many cases lack even basic security or quality controls.
For example:

12. Repositories, Ubuntu Documentation, https://help.ubuntu.com/community/Repositories.

https://help.ubuntu.com/community/Repositories

The Linux Foundation10Improving Trust and Security in Open Source Projects

•	Few language repositories currently provides for a
mechanism through which stored code is examined
for its purpose, increasing consumer confusion and
in some cases enabling malicious activity;

•	Few language repositories perform systematic
checks for vulnerabilities in stored code or for
deprecated packages;

•	No language repository currently provides for a
mechanism through which a consumer can tell if
one piece of stored code is derived from another,
which limits their ability to discover whether
vulnerabilities or other issues are being inherited
from dependencies;

•	 In most language repositories, weak or missing
authentication and publisher verification
mechanisms create uncertainty and risk over the
provenance of stored code;

•	Some language repositories do not provide two-
factor or multi-factor authentication of developer
accounts, and those that do often do not require it,
encourage it, or indicate to others that the developer
account (and packages that account controls) is
weakly protected;

•	While many language repositories provide for code
signing, few, if any, provide for or enable strong
mechanisms for verifying the validity of those
signatures;

•	Some language repositories contain restrictive End
User License Agreements (EULAs) that limit the ability

of conscientious consumers from attempting to perform
their own security and quality analysis on stored code.

•	Many language repositories do not verify, or do
not make it easy for others to verify, that compiled
or generated packages are necessarily generated
from the expected, publicly-available source that is
inspectable by others.

While some language repositories have taken steps
to address subsets of these concerns, no repository
has developed mechanisms for addressing them all.
Further, for some language repositories that have
attempted to address these concerns, many have
chosen to do so by “commercializing” the repository
itself, whereby paying customers receive “premium”
features like those listed above. Consequently, many
basic and necessary security and quality controls
remain outside the reach of many everyday consumers.

Project Dependency Managers
(“Package Managers”)
As a result of software having now “eaten the world,”
users, developers, and maintainers of software require
straightforward and robust tools through which they may
interact with and efficiently manage the large—and
growing ever-larger—amounts available today. While many
such tools exist, the most popular and widespread of them
are “package managers”—software tools that themselves
automate the process of installing, upgrading, configuring,
and removing software packages, libraries, and other
such files from a given system.13 In particular, a certain

13. Package manager, Wikipedia, https://en.wikipedia.org/wiki/Package_manager; What is a package manager, Debian, https://www.
debian.org/doc/manuals/aptitude/pr01s02.en.html.

 https://en.wikipedia.org/wiki/Package_manager
https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html
https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html

The Linux Foundation11Improving Trust and Security in Open Source Projects

type of package manager called a “project/application
dependency manager” (PDM) is the tool of choice.14

By leveraging PDMs, users are able to turn the previously
complex, multi-step process of locating, installing, and
configuring software into a single step. Under the hood,
PDMs make connections to language repositories like those
described above, retrieve the software specified by the
user, including all the software it indirectly depends on,
and—where applicable—configure that software as desired.
In simplifying software retrieval and management in this way,
PDMs have greatly reduced the levels of expertise and
resources necessary for modern software development.

However, PDMs are simply software retrieval tools.
They do not, nor is there currently any feasible way to
modify them to, check whether the retrieved software:

•	Has known security or reliability issues;

•	Contains unexpected or malicious behavior;

•	Has a misleading package name that suggests
“typosquatting” and/or is the name of a built-in
library, nor do many implement defenses such as
obscurity alerts.15

Instead, these practices should be—but as discussed
above, usually aren’t—performed within other parts
of the software supply chain, frustrating efforts by
PDM users and PDM maintainers themselves to ensure
some degree of security and quality within retrieved
software. This is especially problematic since, as

evidenced by the increasing frequency of security
incidents involving PDMs, the weaknesses inherent
within their current procedures are becoming popular
avenues of exploitation for malicious actors.

Vulnerability Databases
As discussed above, a piece of modern “software” is
almost guaranteed to be a composition of many software
packages woven together. These “building block” packages
may be proprietary code, licensed code, or OSS, but
the bottom line remains that they often number
from dozens to thousands for each discrete software
product. While this method—as shown by development
trends and analyses of the ecosystem—provides
significant benefits, it also leads to a notable risk:
developers and companies today must worry not only
about vulnerabilities and bugs discovered in their own
code, but those discovered in each and every one of the
software packages on which their product depends.

Just as modern software development outpaced strictly
in-house development strategies, the sheer number, variety,
and uniqueness of vulnerabilities and bugs discovered
in modern software means that strictly in-house
vulnerability tracking is impossible. This was a reality
recognized early-on by the software community, and led
to the creation of a standardized, United States-based set
of programs for naming, describing, and tracking
vulnerabilities and bugs: the Common Vulnerabilities
and Exposures (CVE) program and the National
Vulnerability Database (NVD) program.16

14. See supra note 2.

15. Vaidya et al, “Security Issues in Language-based Software Ecosystems, March 6, 2019, https://arxiv.org/abs/1903.02613

16. While the CVE and NVD programs are generally relied-upon worldwide, it is important to keep in mind that they do not encompass all
countries’ programs in all cases.

https://arxiv.org/abs/1903.02613

The Linux Foundation12Improving Trust and Security in Open Source Projects

These two programs have existed for over two decades
and have become the foundation for many modern
cybersecurity tools, products, and practices.17 However,
in recent years both programs have publicly struggled
with the staggering growth of new technologies,
which has led and continues to lead to a significantly
increased influx of requests for inclusion in the NVD.
These struggles have created a number of downstream
issues, including:

•	Missing or rejected vulnerabilities, leading to
incomplete coverage in the NVD;18

•	Severely delayed assignment of vulnerability
identifiers, creating risks for downstream parties
who remain unaware and likely unprotected from
the issue;

•	Poorly contextualized descriptions of vulnerabilities,
increasing the difficulty of mitigation and
vulnerability management;

•	Overinflated and/or underplayed vulnerability
scores, leading to misallocated resources and in
some cases vulnerability “fatigue.”

•	Abuse by developers who claim inflated numbers
of vulnerabilities in order to pad resumes, creating
“false positives.”

•	Difficulty in revoking assigned vulnerabilities when
they are found to be invalid, creating confusion and
lack of trust in overall program.

•	Abuse by engineers in organizations who see
CVE assignments as a way to circumvent difficult
management procedures preventing them from
doing normal software upgrades.

•	Discomfort with the CVE program because it is
managed by a US federal agency.

•	 Inability to handle ongoing and complex
vulnerabilities that require multiple fixes across
multiple packages over extended periods of time.

Consequently, many stakeholders who rely on the CVE
and NVD programs—stakeholders which include nearly
all modern companies, federal agencies, and other
organizations—are left with an incomplete picture of
their vulnerability exposure. Worse still, the lack of
coverage in the NVD can lead to a false sense of security,
where stakeholders believe that their products remain
relatively secure and reliable, since there are fewer or
no associated CVE entries in the NVD.

End User Practices
Given their place at the end of the software supply
chain, end users arguably have the least control over
security—or any—practices undertaken by the parties
responsible for the parts of the supply chain described
in the earlier sections. That understanding, however,
misses the fact that while the software supply chain
is most often discussed as a straight-line continuum
starting with developers writing code and terminating
when end users acquire products, there remains a

17. The NVD is considered so important that in 2018 it was exempted from the U.S. government shutdown. See “Closed Down: Government
Shutdown Impacts Enterprise Security, December 31, 2018, https://duo.com/decipher/government-shutdown-impacts-enterprise-security

18. Over 6,000 vulnerabilities went unassigned by MITRE’s CVE project in 2015, Steve Ragan, CSO Online (Sep. 22, 2016), https://www.
csoonline.com/article/3122460/over-6000-vulnerabilities-went-unassigned-by-mitres-cve-project-in-2015.html.

https://duo.com/decipher/government-shutdown-impacts-enterprise-security
https://www.csoonline.com/article/3122460/over-6000-vulnerabilities-went-unassigned-by-mitres-cve-pr
https://www.csoonline.com/article/3122460/over-6000-vulnerabilities-went-unassigned-by-mitres-cve-pr

The Linux Foundation13Improving Trust and Security in Open Source Projects

distinct, better method for interacting with it: as a loop,
rather than a chain. In other words, while the graphic
introduced early in this white paper presented the
software supply chain as this:

 It can and arguably should be approached as this:

For end users, there are typically two ways in which
they interact with software generally and the software
supply chain in particular. In many cases, end users
will source solutions from technology vendors
providing commercial support, in which case they may
never make any decisions about selection of PDMs
or OSS packages. What end users do have, but which

many underutilize, is control over their acquisition
requirements.

This paper has described numerous practices which
segments of the software supply chain either aren’t
but should be following, or practices that those
segments are following, but shouldn’t. While some
of these practices are highly technical and relate to
specific, highly nuanced parts of the software supply
chain, others are more general and easier to isolate as
standalone “best practices.” And these standalone best
practices can easily become acquisition requirements
that end users insert into their contracts as they
negotiate with technology providers. For example, end
users may require that:

•	Dependency lists, software bills-of-material, or
other such component tracking mechanisms are
provided in a robust and transparent way.

•	Vulnerabilities within products maintained by
a technology provider that are judged to have
specific impacts must be remediated within certain
timeframes.

•	Developers must use 2FA or MFA with any accounts
related to the development of the software being
acquired.

There remains the other case, however, where end
users will choose to self support their own solution
with open source packages. requiring that they then are
capable of applying the same practices discussed in the
Developer Practices section of this paper. In addition,
beyond those practices and the acquisition practices
outlined above, there are practical steps that end users
can take to: inspect and verify the trustworthiness of
software, download their software from trustworthy
locations, ensure that the software have requested
is the software they wanted, verify that the software

The Linux Foundation14Improving Trust and Security in Open Source Projects

that they received is the software that they wanted,
and limit the privilege they give software to reduce
the impact of supply chain problems. However, the
following still remain true:

•	 It is difficult to determine if software is
trustworthy, both because of a lack of agreed-upon
understanding as to what it means for software to
in fact be “trustworthy,” and because of a lack of
effective tooling.

•	Similarly, it is challenging to determine if download
locations, such as the repositories discussed earlier,
are trustworthy.

•	Users often fail to ensure that the software they
request is the software is in fact the package they
believe it to be, and is not malicious, fraudulent, or
otherwise incorrect.

•	Similarly, users often fail to verify that the software
they received is the software that they wanted by,
for example, checking digital signatures, and some
users run code immediately upon receipt, without
performing security, quality, or other checks.

End users are arguably in the best and worst positions
to influence the software supply chain. For those that
are acquiring technologies from vendors, they may be
able to leverage their acquisition practices to encourage
them to apply security best practices that they might
not otherwise, but they still have less ability to correct
or even have visibility into deficiencies in the products
they receive. For those that choose to self-source their
software, these end users need recognize that they
then become, in essence, developers, and behave
appropriately. In both cases, they must recognize that
changes in modern software development require
changes in their own behavior.

The Linux Foundation15Improving Trust and Security in Open Source Projects

Conclusion
Modern software development is a massively
distributed process, with a “supply chain” that often
involves dozens, if not thousands, of individual
developers, organizations, pieces of software, and
the tools, policies, and procedures to weave them
altogether. While this trend—which only continues to
increase—has created significant value by reducing
barriers to entry for new programmers, decreasing
mean-time-to-market for products, and ensuring
a global community of expertise, it also creates
opportunities for risk and exploitation.

Software repositories, package managers, and
vulnerability databases are all necessary components
of the software supply chain, as are the developers
and end users who leverage them. Unless and until
the weaknesses inherent within their current designs
and procedures are addressed, however, they will
continue to expose the companies and developers who
rely upon them to significant risk. This white paper
was written to highlight known problems within the
software supply chain, and serve as a call to action to
address them. The Linux Foundation will be convening
a meeting of global technology leaders in working
across application and product security groups in order
to design collective solutions to address these problems.

The Linux Foundation promotes, protects and
standardizes Linux by providing unified resources
and services needed for open source to successfully
compete with closed platforms.

To learn more about The Linux Foundation or our other
initiatives please visit us at www.linuxfoundation.org

